

Subscriber access provided by ISTANBUL TEKNIK UNIV

Diterpenes from the Gorgonian Coral Erythropodium caribaeorum from the Southern Caribbean

Ramesh Dookran, Darin Maharaj, Baldwin S. Mootoo, Russel Ramsewak, Stewart McLean, William F. Reynolds, and Winston F. Tinto

> J. Nat. Prod., 1993, 56 (7), 1051-1056• DOI: 10.1021/np50097a007 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink <u>http://dx.doi.org/10.1021/np50097a007</u> provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

DITERPENES FROM THE GORGONIAN CORAL ERYTHROPODIUM CARIBAEORUM FROM THE SOUTHERN CARIBBEAN

RAMESH DOOKRAN, DARIN MAHARAJ, BALDWIN S. MOOTOO,* RUSSEL RAMSEWAK,

Department of Chemistry, University of the West Indies, St. Augustine, Trinidad and Tobago

STEWART MCLEAN, WILLIAM F. REYNOLDS,*

Department of Chemistry, University of Toronto, Toronto, Canada, M5S 1A1

and WINSTON F. TINTO*

Department of Chemistry, University of the West Indies, Cave Hill Campus, Barbados

ABSTRACT.—*Erythropodium caribaeorum* obtained off the coast of Tobago has yielded the known diterpenes erythrolide A [1], erythrolide B [2], and erythrolide E [3] as well as a new diterpene designated erythrolide J [4]. The structure of compound 4 was determined by high resolution nmr studies.

Well over one hundred diterpenes possessing the briarane skeleton have been isolated from marine coelenterates mainly from the sub-class Octocorallia (1). Recent reports of seven new compounds of this type from *Erythropodium caribaeorum* Duchassaing & Michelotti (Gorgonidae) and nine from a *Briareum* sp. as well as twenty-five from the encrusting gorgonian *Solenopodium stechei* collected on the Great Barrier Reef off Australia have added significantly to this group of diterpenes (2,3).

E. caribaeorum is an encrusting gorgonian that is not readily distinguished from *Briareum asbestinum*. Previous investigations of this organism have yielded erythrolides A–I (2,4). Erythrolides A [1] and B [2] have not been reported thus far from any other organism and may well be chemotaxonomic markers for *E. caribaeorum*. We report here our investigation of *E. caribaeorum* collected off the coast of Tobago. In addition to compounds 1 and 2, we also isolated erythrolide E [3] (2) and a new diterpene which we have named erythrolide J [4].

Erythrolides A [1], B [2], and E [3] were identified by comparison of their respective ¹H-nmr spectral data with those reported in the literature (2,4). The complete ¹H and

Journal of Natural Products

Proton	Compound				
	1	2	3	4 [▷]	
H-1	2.30 (8.0,7.0)		_	_	
H-2	6.45 (17.0,7.0,2.0)	6.20 (16.0)	4.18 (1.7)	4.88 (8.5)	
H-3	5.84 (17.0,2.0)	5.51 (16.0)	3.96 (bs)	2.91 (m)	
H-3'	—		_	2.09 (m)	
H-4	5.99 (s)	5.53 (bs)	2.73 (13.8,3.0)	5.82 (12.4,5.8)	
H-4'	_	_	2.75 (13.8,4.1)	_	
Н-6	4.54 (9.8)	5.03 (2.0)	4.78 (1.0)	6.87 (10.0,1.1)	
H-7	5.13 (9.8)	5.64 (2.0)	4.36 (1.0)	5.60 (10.0)	
H-9	5.42 (2.0)	5.47 (bs)	5.72 (2.5)	5.25 (bs)	
H-10	2.94 (bs)	3.78 (bs)	3.20 (2.5)	2.94 (4.0)	
H-11	—	i	—	1.99 (m)	
H-12	—	_	_	4.81 (2.0)	
H-13	1.92 (8.0)	6.06 (10.0)	6.00 (10.1)	1.99 ^c (m)	
H-14	_	6.60 (10.0)	6.63 (10.1)	4.74 (3.1)	
H-15	1.56 (s)	1.40 (s)	1.62 (s)	1.14 (s)	
H-16	5.59 (s)	5.55 (s)	5.67 (s)		
H-16'	5.47 (s)	5.54 (s)	5.39 (s)	—	
H-17	3.14 (8.0)	2.74 (7.6)	2.68 (7.5)	2.56 (7.1)	
H-18	1.19 (8.0)	1.24 (7.6)	1.03 (7.5)	1.24 (7.1)	
H-20	1.37 (s)	1.40 (s)	1.45 (s)	1.13 (7.6)	
MeCO	2.21 (s)	2.15 (s)	2.24 (s)	2.24 (9-Ac)	
	2.12 (s)	2.10 (s)	2.10 (s)	2.04 (12-Ac)	
	2.01 (s)	1.96 (s)		2.00 (14-Ac)	
	_		· ·	1.95 (2-Ac)	
ОМе	—	—	—	3.84 (s)	

TABLE 1. ¹H-nmr Data for Compounds 1-4 in CDCl₃.^{*}

^bSee Figure 1, partial structure **D** for the assignment of the 3-acetoxybutanoyl moiety in erythrolide J [4].

^cAverage value for an incompletely resolved CH₂ group.

¹³C assignments for all three compounds were achieved by the use of COSY, HETCOR, and FLOCK (5) experiments. Our assignments were in complete agreement with those reported for erythrolide E [3]. However, for erythrolides A [1] and B [2], our assignments (Tables 1 and 2), in a few instances, are at variance with those reported in the literature (2,4).

An inspection of the HETCOR spectrum of **1** revealed that C-6 was directly attached to a proton at δ 4.54. This proton was coupled (J=9.8 Hz) to a proton at δ 5.13, whose directly attached carbon resonated at δ 80.7, indicating that H-6 and H-7 should be interchanged. The HETCOR spectrum also revealed that H-1 (δ 2.30) was directly attached to a carbon at δ 37.3, while H-13 (δ 1.92) was attached to a carbon at δ 39.8. This observation indicated that the assignments for C-1 and C-13 should be interchanged. In the FLOCK spectrum of **1**, the C-14 carbon had long-range connectivity with methyl protons at δ 1.37, which were directly attached to a carbon at δ 21.7. In a similar fashion the C-11 carbon at δ 83.1 showed long-range correlations to methyl protons at δ 1.56. Again, from the HETCOR experiment, these methyl protons were directly attached to a carbon at δ 22.7. These observations indicated that the H-15/C-15 and H-20/C-20 assignments should be interchanged. The HETCOR spectrum along with the COSY experiment also indicated that C-7 and C-9 should be interchanged. A detailed analysis of COSY, HETCOR, and FLOCK spectra of **2** revealed that H-6 and H-7 should be interchanged, as well as C-10 and C-17, and C-15 and C-20.

1053	,
------	---

	Compound				
Carbon	1	2	3	4 ^b	
C-1	37.3	42.0	36.3	45.3	
C-2	126.7	144.9	86.2	73.7	
C-3	133.0	131.5	69.9	36.8	
C-4	75.7	73.6	41.3	67.9	
C-5	138.5	141.7	138.3	137.5	
C-6	59.4	65.7	59.3	138.4	
C-7	80.7	79.2	85.7	76.9	
C-8	87.3	81.1	83.1	82.6	
C-9	80.5	77.8	68.8	75.6	
C-10	43.7	48.8	41.7	33.4	
C-11	83.1	80.9	80.5	42.9	
C-12	205.0	195.5	194.0	72.7	
C-13	39.8	126.3	124.5	24.0	
C-14	29.7	154.5	152.3	74.4	
C-15	21.7	20.9	21.2	14.9	
C-16	127.9	115.8	123.0	167.2	
C-17	43.9	44.8	48.9	43.6	
C-18	9.5	9.3	6.8	6.4	
C-19	175.1	176.2	174.0	175.5	
C-20	22.7	22.8	22.3	15.1	
Acetates	171.9	169.5	169.9	170.4 (12-Ac)	
	20.9	21.0	21.3	21.4	
	169.9	169.4	169.9	170.4 (14-Ac)	
	21.2	21.2	21.1	21.1	
	167.9	168.9		170.1 (2-Ac)	
	21.7	21.2	_	20.9	
	_	—	—	169.2 (9 -A c)	
	_	— —		21.6	
OMe	—	_		52.9	

TABLE 2. ¹³C-nmr Data for Compounds 1-4 in CDCl₃.⁴

*Chemical shifts were measured at 100.6 MHz.

^bSee Figure 1, part structure **D** for the assignments for the 3-acetoxybutanoyl moiety in erythrolide J [4].

		% Enhancement 3.0		
Irradiated	Observed	% Enhancement		
δ 1.13 (H-20)	δ 5.25 (H-9)	3.0		
	δ 4.81 (H-12)	4.0		
	δ 2.24 (9-Ac)	0.8		
δ 1.14 (H-15)	δ 4.74 (H-14)	5.0		
	δ 2.24 (9-Ac)	1.0		
	δ 1.95 (2-Ac)	0.6		
δ 1.24 (H-18)	δ 5.25 (H-9)	1.0		
	δ 2.56 (H-17)	7.0		
δ 4.88 (H-2)	δ 5.82 (H-10)	3.0		
	δ 2.94 (H-4)	3.0		
δ 5.82 (H-4)	δ 4.88 (H-2)	4.0		

TABLE 3.	NOe Data	for Er	vthrolide	114	1.*
			VIII OIIUC		

^aNOe data obtained at 400 MHz using nOe difference spectroscopy.

Erythrolide J [4], $[\alpha]D + 17.3^{\circ}$, was isolated as an amorphous solid and had the molecular formula $C_{35}H_{48}O_{17}$ on the basis of hrfabms (positive). ¹H- and ¹³C-nmr data along with ir spectroscopy indicated the following functional groups: (a) six *O*-acyl groups of which five were -OAc, (b) one -CO₂Me, (c) one γ - lactone (ir 1778 cm⁻¹), (d) one hydroxyl (ir 3430 cm⁻¹), and (e) a trisubstituted double bond. These accounted for all seventeen oxygen atoms in the molecule and for ten double bond equivalents, which suggested that compound 4 was bicarbocyclic.

A combination of ¹H nmr, COSY, HETCOR, and the FLOCK pulse sequence (5) led to the partial structures shown in Figure 1. Partial structure **A** was supported by a uv absorption at λ max (MeOH) 225 nm (ϵ 3200), and the proton on the β -carbon (δ 6.87) of the conjugated system was shown from COSY data to be adjacent to a proton (δ 5.60) on an oxygen-bearing sp³ hybridized carbon atom.

FIGURE 1. Partial structures and nmr assignments for compound 4.

Partial structure **B** showed two secondary methyl groups and a tertiary C-O moiety adjacent to a secondary C-O. The fragment **C** related the only quaternary carbon in the molecule with a methyl singlet and an adjacent secondary oxygenated carbon. Finally, an acetoxy-bearing four-carbon unit which must be a side chain on the main skeleton was revealed as the fragment **D**. In addition, from COSY data two three-carbon units, each showing a 1,3 relationship of two secondary oxygenated carbons separated in each case by a methylene carbon, were revealed.

The partial structures A-D and the latter two 3-carbon fragments could be assembled as shown in Figure 2, in which all the direct connectivities were revealed by COSY and FLOCK data except C-1/C-10 and C-4/C-5. The 3-acetoxybutanoyl moiety as well as the acetate groups were assigned on the basis of a series of selective INEPT experiments. Erythrolide J was thus shown to have structure **4** excluding the stereochemistry.

The stereochemistry of erythrolide J was determined from a series of nOe difference experiments as follows. In the cyclohexane ring Me-15 and H-14 are on the same face of the molecule since there is an nOe relationship between the protons concerned.

FIGURE 2. Assembly of partial structures for compound 4 based on COSY and FLOCK data.

Similarly there is an nOe relationship between Me-20 and H-12; their cis relationship was supported by the lack of observable coupling between them. The nOe enhancement of H-10 when H-2 was irradiated confirmed that H-2 was trans to the methyl attached to C-1 and on the same side of the molecule as H-10; this also supported the attachment of C-1 to C-10.

The large coupling between H-6 and H-7 (J=10.0 Hz) revealed their anti-parallel relationship. The acetate attached to C-9 had a β orientation since there was an nOe interaction between its methyl group (δ 2.24) and both Me-15 and Me-20. The stereochemistry at C-7 and C-8 was assigned by analogy with related briaranes (6).

The nOe interaction between Me-18 and H-9 was consistent with an α orientation of the methyl group interacting with a proton at C-9 in an α -pseudoequatorial disposition. The 3-acetoxybutanoyl moiety at C-4 had a β orientation since irradiation of the C-4 proton caused an enhancement of the proton at C-2, while irradiation of H-2 resulted in an nOe interaction with H-4.

Erythrolide J [4] is only the second naturally occurring briarane diterpene so far reported with the Me-16 group oxygenated up to the level of a carboxylate moiety (6). While a large variety of 0-acyl groups other than the common acetate group have been observed in these compounds, (2, 7-11) this is the first report of a briarane diterpene bearing a 3-acetoxybutanoyl substituent.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mp's were taken on a Kofler hot stage apparatus and are uncorrected. Uv spectra were obtained on a Cary 14UV spectrophotometer in MeOH solutions. Ir spectra were obtained on a Nicolet 3DX FTIR spectrometer. The nmr spectra were recorded on a Varian XL-400 spectrometer in CDCl₃ solutions with TMS as an internal standard. Nuclear Overhauser enhancements were determined from nOe difference spectra produced by on-resonance and off-resonance irradiation of the peak of interest. To obtain sufficient signal/noise ratio for accurate nOe measurements, 128 transients were collected per spectrum, with the acquisitions alternated in blocks of 16 to minimize effect of spectrometer instabilities. Exponential line broadening of 1 Hz was applied to each spectrum prior to generating difference spectra. A VG 70-250S mass spectrometer operating at 70 eV was used to obtain ms.

EXTRACTION AND ISOLATION.—A sample of *E. caribaeorum* was collected at La Guira Reef (-7 m) in southwest Tobago and was immediately stored in Me₂CO. The organism was identified by Mr. Richard Laydoo of the Institute of Marine Affairs, Trinidad and Tobago, where a voucher specimen has been deposited. The sample was subsequently macerated in the solvent and exhaustively extracted with Me₂CO. The extract was concentrated to a small volume, diluted with H₂O, and extracted with EtOAc to give a brown oil (4.67 g). The crude extract was suspended in 95% aqueous MeOH and extracted with petroleum ether, further diluted with H₂O, and re-extracted with EtOAc. The EtOAc fraction was washed with 5% Na₂CO₃, dried over Na₂SO₄, and the solvent evaporated to give a dark brown viscous oil (2.98 g, 1.58% based on the dried wt of the extracted organism).

The EtOAc extract (1.40 g) was chromatographed on Si gel using CH_2Cl_2 with increasing concentrations of EtOAc as eluent. Fractions eluting wth 15% EtOAc were combined and separated by preparative tlc in petroleum ether- CH_2Cl_2 -Me₂CO (4:1:1) to give erythrolides A [1] (18 mg) and B [2] (160 mg). A further portion (0.60 g) of the EtOAc extract was separated by preparative tlc in petroleum ether-CH₂Cl₂-Me₂CO (3:1:1) followed by rechromatography on a chromatotron [petroleum ether-CH₂Cl₂-Me₂CO (4:1:1)] and subsequent preparative tlc in CH₂Cl₂-MeOH (50:1) to give erythrolide E [**3**].

Erythrolide A **[1**].—Mp 177–179° (CHCl₃/MeOH) (14 mg); ir (Nujol) 3420, 1765, 1745 cm⁻¹; uv (MeOH) 215 nm (ϵ 8600); eims *m*/*z* [**M**]⁺ 538 (2%), 503 (6), 478 (12), 436 (61), 418 (27), 401 (26), 376 (100), 341 (60), 323 (28).

Erythrolide B [2].—Colorless glass (150 mg): ir (neat) 3520, 1785, 1740, 1690 cm⁻¹; uv (MeOH) 224 nm (ϵ 9100); eims *m/z* [M]⁺ 538 (2), 503, (7), 478 (3), 436 (65), 401 (6), 376 (9), 186 (12).

Erythrolide E [3].—Compound 3 was obtained as a white amorphous solid (7 mg): cims (isobutane) m/z {M+H]⁺ 497 (47%), 437 (100), 377 (57), 135 (73); hreims 496.1484, calcd for C₂₄H₂₉O₉Cl, 496.1500. A sample of *E. caribaeorum* was collected at Milford Bay (-15 m), Tobago, steeped in Me₂CO, and extracted as before. The final EtOAc extract gave an orange-brown viscous solid (1.23 g, 1.98% of the dried wt of the organism).

Chromatography of the extract (0.95 g) was done with C_6H_6 containing increasing concentrations of EtOAc. The fraction (38.9 mg) eluting with 40% EtOAc was subjected to preparative tlc on Si gel in petroleum ether-Me₂CO-EtOAc (5:1:1) to give compound 4 as an amorphous solid (14.3 mg).

Erythrolide J [4].—[α]D +17.3° (c=0.33, CHCl₃); ir (CHCl₃) 3430, 1778, 1739, 1728 cm⁻¹; uv (MeOH) 225 nm (ϵ 3200); fabms (positive) m/z [M+H]⁺ 741 (0.5%), 681 (1), 621 (1), 595 (7), 534 (22), 492 (35) 372 (23), 69 (100); hrfabms (positive) 741.3032, calcd for C₃₃H₄₉O₁₇ [M+H]⁺ 741.2970.

ACKNOWLEDGMENTS

Research in the Toronto laboratory was supported by grants from the Natural Sciences and Engineering Research Council of Canada. One of us (WFT) gratefully acknowledges receipt of a CIDA/NSERCC research associateship.

LITERATURE CITED

- 1. D.J. Faulkner, Nat. Prod. Rep., 5, 541 (1988), and references cited therein.
- 2. E.O. Pordesimo, F.J. Schmitz, L.S. Ciereszko, M.B. Hossain, and D. van der Helm, J. Org. Chem., 56, 2344 (1991).
- 3. S.J. Bloor, F.J. Schmitz, M.B. Hossain, and D. van der Helm, J. Org. Chem., 57, 1205 (1992).
- 4. S.A. Look, W. Fenical, D Van Engen, and J. Clardy, J. Am. Chem. Soc., 106, 5026 (1984).
- 5. W.F. Reynolds, S. McLean, M. Perpick-Dumont, and R.G. Enriquez, Magn. Reson. Chem., 27, 162 (1989).
- 6. S.J. Wratten and D.J. Faulkner, Tetrahedron, 35, 1907 (1979).
- 7. B.F. Bowden, J.C. Coll, I.M. Vasilescu, and P.N. Alderslade, Aust. J. Chem., 42, 1727 (1989).
- 8. A. Clastres, P. Laboute, A. Ahond, C. Poupat, and P. Potier, J. Nat. Prod., 47, 162 (1984).
- 9. A. Clastres, A. Ahond, C. Poupat, P. Potier, and S.K. Kan, J. Nat. Prod., 47, 155 (1984).
- 10. S. Isaacs, S. Carmely, and Y. Kashman, J. Nat. Prod., 53, 596 (1990).
- 11. A. Groweiss, S.A. Look, and W. Fenical, J. Org. Chem., 53, 2401 (1988).

Received 19 October 1992